

Available online at www.sciencedirect.com



Tetrahedron Letters 45 (2004) 9229-9232

Tetrahedron Letters

# An efficient protocol for the preparation of MOM ethers and their deprotection using zirconium(IV) chloride<sup> $\approx$ </sup>

G. V. M. Sharma,\* K. Laxma Reddy, P. Sree Lakshmi and Palakodety Radha Krishna

D-211, Discovery Laboratory, Organic Chemistry Division III, Indian Institute of Chemical Technology, Hyderabad 500 007, India

Received 9 August 2004; revised 4 October 2004; accepted 14 October 2004

Abstract—An efficient protocol for the preparation of MOM ethers from alcohols and formaldehyde dimethyl acetal (DMFA) using  $ZrCl_4$  (10mol%) at room temperature under solvent free conditions has been developed. Similarly, the same Lewis acid,  $ZrCl_4$  (50mol%), in isopropanol at reflux was utilised for the deprotection of MOM ethers. © 2004 Elsevier Ltd. All rights reserved.

### 1. Introduction

Functional group protection and deprotection plays a prominent role in the synthesis of complex natural products,<sup>1</sup> while the selective removal of a protecting group is an important topic in synthetic chemistry. Alcohols are most commonly protected as ethers and esters, wherein alkyl and benzyl ethers are permanent protective groups (difficult to remove) while others, like THP, TBS, TPS and MEM/MOM ethers are acid labile (easier to remove). Of the acetal derived protecting groups for alcohols, such as THP and MOM/MEM, THP ethers generate diastereomers upon protection, while such problems do not arise with MOM and MEM groups. MOM ethers are commonly prepared by alkylation of the corresponding alkoxide anions with the highly carcinthe corresponding alkoxide amons with the highly carcin-ogenic MOMCl.<sup>2,3</sup> Alternatively, a variety of acidic rea-gents such as  $P_2O_5$ ,<sup>4</sup> PTSA,<sup>5</sup> Nafion-H,<sup>6</sup> TMSI,<sup>7</sup> molybdenum(IV) acetyl acetonate,<sup>8</sup> BF<sub>3</sub>·Et<sub>2</sub>O,<sup>9</sup> Enviro-cat,<sup>10</sup> sulfated zirconia,<sup>11</sup> expansive graphite,<sup>12</sup> FeCl<sub>3</sub> dispersed on 3Å molecular sieves<sup>13</sup> and Sc(OTf)<sub>3</sub>,<sup>14</sup> have been reported for the preparation of MOM ethers using formaldehyde dimethyl acetal (DMFA) and a new reagent, MOM-ON.15 Similarly, several methods were reported earlier for the cleavage of MOM ethers, for example, using HCl,<sup>16</sup> BBr<sub>3</sub>,<sup>17</sup> *p*-TsOH,<sup>18</sup> ZnBr<sub>2</sub>,<sup>19</sup> TiCl<sub>4</sub>,<sup>19</sup> Me<sub>2</sub>BBr,<sup>20a</sup> (*i*-Pr)<sub>2</sub>BBr,<sup>20b</sup> CBr<sub>4</sub>,<sup>21</sup> a clay cata-

lyst,<sup>22</sup> NaHSO<sub>4</sub>·SiO<sub>2</sub>,<sup>23</sup> and  $I_2$ /MeOH.<sup>24</sup> In view of the drawbacks associated with the known methods such as the need for stoichiometric amounts of expensive reagents, high temperatures, strong protic acid conditions, slow reactions and tedious workup procedures, there is a need to develop better reagents and conditions for the preparation and deprotection of MOM ethers. Our continued interest in the synthesis of new saccharides, natural products<sup>25</sup> from monosaccharides and synthetic methods,<sup>25</sup> prompted us to investigate a new procedure for MOM protection and deprotection. Herein, we report a simple and efficient  $ZrCl_4$  (10mol%) catalysed method for MOM protection (at room temperature under solvent free conditions) of alcohols in the presence of a variety of acid sensitive groups and on substrates such as carbohydrates, terpenes and others and the deprotection of MOM ethers in isopropanol at reflux (see Eq. 1).

$$\begin{array}{c} \text{ZrCl}_{4} (10 \text{ mol}\%), \\ \text{DMFA, rt} \\ \hline \\ \hline \\ \hline \\ \hline \\ \text{ZrCl}_{4} (50 \text{ mol}\%), \\ \text{isopropanol, reflux} \end{array} \quad \textbf{R-OMOM} \qquad (1)$$

## 2. Preparation of MOM ethers using ZrCl<sub>4</sub> (10mol%)

Accordingly, the reaction of decanol 1 (Table 1, entry 1) with DMFA (2 equiv) and  $ZrCl_4$  (10 mol%) at room temperature under solvent free conditions gave 1a

*Keywords*: MOM ethers; Formaldehyde dimethyl acetal; Zirconium chloride.

<sup>&</sup>lt;sup>☆</sup>IICT Communication No. 0407017.

<sup>\*</sup> Corresponding author. Fax: +91 40 27160387; e-mail: esmvee@ iict.res.in

| Table 1. ZrC | ₄ (10mol% | ) catalysed | preparation | of MOM ethers |
|--------------|-----------|-------------|-------------|---------------|
|--------------|-----------|-------------|-------------|---------------|

| Entry | Starting material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Product                                                                            | Time (h) | Yield (%) |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------|-----------|
| 1     | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>8</sub> CH <sub>2</sub> OH<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>8</sub> CH <sub>2</sub> OMOM<br>1a         | 4        | 96        |
| 2     | он<br>2<br>ОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ОМОМ<br>2а<br>ОМОМ                                                                 | 1        | 97        |
| 3     | $\bigcup_{3} \bigcup_{3} \bigcup_{3a} \bigcup_$ |                                                                                    | 2        | 96        |
| 4     | 4 OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    | 6.5      | 97        |
| 5     | он<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OMOM<br>5a                                                                         | 7        | 94        |
| 6     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                    | 5        | 93        |
| 7     | O O O O O O O O O O O O O O O O O O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                    | 6.5      | 94        |
| 3     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MOMO O O O O O O O O O O O O O O O O O                                             | 5        | 93        |
| )     | TPSOCH <sub>2</sub> (CH <sub>2</sub> ) <sub>2</sub> CH <sub>2</sub> OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TPSOCH <sub>2</sub> (CH <sub>2</sub> ) <sub>2</sub> CH <sub>2</sub> OMOM           | 3.5      | 98        |
| 0     | 9<br>PMBO<br>10<br>9<br>9<br>9<br>PMBO<br>9<br>PMBO<br>9<br>PMBO<br>9<br>PMBO<br>9<br>PMBO<br>9<br>PMBO<br>9<br>PMBO<br>9<br>PMBO<br>9<br>PMBO<br>9<br>PMBO<br>9<br>PMBO<br>9<br>PMBO<br>9<br>PMBO<br>9<br>9<br>PMBO<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                    | 5        | 95        |
| 1     | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>8</sub> CH <sub>2</sub> OTBDMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>8</sub> CH <sub>2</sub> OMOM               | 6        | 96        |
| 2     | 11<br>CH <sub>3</sub> (CH <sub>2</sub> ) <sub>8</sub> CH <sub>2</sub> OTHP<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11a<br>CH <sub>3</sub> (CH <sub>2</sub> ) <sub>8</sub> CH <sub>2</sub> OMOM<br>12a | 5        | 97        |

(96%) in 4h. However, benzylic alcohols 2 and 3 (Table 1, entries 2 and 3) gave the respective products 2a (97%) and 3a (96%) more quickly (1 and 2h). Similarly, nopol 4 and menthol 5 (Table 1, entries 4 and 5) underwent smooth reaction to give 4a (97%) and 5a (94%), respectively, wherein formation of 5a took longer (7h). In a further study, the sugar substrates 6, 7 and  $8^{26}$  containing acid sensitive isopropylidene groups as well as an anomeric methoxy group (8) were unaffected under the above reaction conditions and gave 6a (93%), 7a (94%) and 8a (93%), respectively.

Having established the reaction conditions for MOM protection on a variety of substrates, the study was then extended to other alcohols with acid sensitive protecting groups. Thus, alcohols **9** and **10** (Table 1, entries 9 and 10) with TPS and PMB groups, respectively, underwent

facile MOM protection to give the MOM ethers **9a** (98%) and **10a** (95%) as indicated in Table 1. However, substrates  $11^{27}$  and  $12^{28}$  with TBS and THP ether groups on reaction with DMFA and ZrCl<sub>4</sub> (10 mol%) underwent a one-pot deprotection and conversion to give the MOM ethers **11a** (96%) and **12a** (97%), respectively. This study thus infers that TPS, PMB and acetonide groups survive the reaction conditions along with substrates such as sugars/terpenes, while TBS and THP are not compatible and were converted into MOM ethers in one pot.

## 3. Deprotection of (MOM) ethers using ZrCl<sub>4</sub> (50 mol%)

MOM ether **2a** when treated with  $20 \mod \% \operatorname{ZrCl}_4$  in isopropanol at room temperature, gave **2** (Table 2, entry 1)

Table 2. ZrCl<sub>4</sub> (50 mol%) catalysed deprotection of MOM ethers

| Entry | Starting material                                                              | Product                                                                     | Time (h) | Yield (%) |
|-------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------|-----------|
| 1     | ОМОМ                                                                           | ОН 2                                                                        | 1        | 97        |
| 2     | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>8</sub> CH <sub>2</sub> OMOM<br>1a     | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>8</sub> CH <sub>2</sub> OH<br>1     | 4        | 97        |
| 3     |                                                                                | → → → → → → → → → → → → → → → → → → →                                       | 4        | 93        |
| 4     | MOMO , MOCH <sub>3</sub>                                                       |                                                                             | 5        | 93        |
| 5     | TPSOCH <sub>2</sub> (CH <sub>2</sub> ) <sub>2</sub> CH <sub>2</sub> OMOM<br>9a | TPSOCH <sub>2</sub> (CH <sub>2</sub> ) <sub>2</sub> CH <sub>2</sub> OH<br>9 | 3.5      | 97        |
| 6     | PMB0 2 0<br>10a                                                                | рмво 2 Он<br>10                                                             | 4.5      | 94        |

in 92% yield in 24h, while at reflux, the reaction was complete in 11h to give 2 in 90% yield. However, with 50mol% ZrCl<sub>4</sub>, the reaction with 2a was complete in 1h and gave 2 in 97% yield. Further, the reaction of 1a (Table 2, entry 2) with 50mol% ZrCl<sub>4</sub> in isopropanol at reflux gave 1 (97%) in 4h. A similar study on 4a and 8a (Table 2, entries 3 and 4) resulted in 4 (93%) and 8 (93%), while, substrates 9a and 10a containing TPS and PMB groups, respectively, gave 9 (97%), and 10 (94%), wherein the TPS and PMB groups were found to be intact.

In conclusion, mild and efficient protocols for the preparation of MOM ethers using  $ZrCl_4$  (10 mol%)<sup>29</sup> and deprotection of MOM ethers with  $ZrCl_4$  (50 mol%)<sup>30</sup> have been established. The study also demonstrated that acid sensitive groups and substrates such as sugars and terpenes are unaffected by the present reagent system. THP and TBS ethers were converted in one pot into MOM ethers taking advantage of their vulnerability to  $ZrCl_4$ . Thus the above reaction conditions are simple, efficient and high yielding both for the protection and deprotection of MOM ethers and might find use in carbohydrate and other chemistry.

#### Acknowledgements

K.L.R. and P.S.L. thank the UGC and CSIR, New Delhi, for the award of fellowships.

#### **References and notes**

 (a) Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 2nd ed.; Wiley: New York, 1991; (b) Kocienski, P. J. Protecting Groups; Thieme: Stuttgart, 1994.

- 2. Occupational Safety and Health Administration, US Government Printing Office: Washington, DC, 1974.
- 3. Herz, J. E.; Lucero, J.; Santoyo, Y.; Waight, E. S. Can. J. Chem. 1971, 49, 2418–2419.
- 4. Fuji, K.; Nakano, S.; Fujita, E. Synthesis 1975, 276-277.
- 5. Yardley, J. P.; Fletcher, H. Synthesis 1976, 244.
- Olah, G. A.; Husain, A.; Gupta, B. G. B.; Narang, S. C. Synthesis 1981, 471–472.
- Olah, G. A.; Husain, A.; Narang, S. C. Synthesis 1983, 896–897.
- 8. Kantam, M. L.; Santhi, P. L. Synlett 1993, 429-430.
- Danheiser, R. L.; Romines, K. R.; Koyama, H.; Gee, S. K.; Johnson, C. R.; Medich, J. R. Org. Synth. 1992, 71, 133–139.
- Bandgar, B. P.; Hajare, C. T.; Wadgaonkar, P. P. J. Chem. Res. (S) 1996, 90–91.
- Jin, T. S.; Gao, J. J.; Yin, Y. H.; Zhang, S. L.; Li, T. S. J. Chem. Res. (S) 2002, 188–189.
- Jin, T. S.; Li, T. S.; Gao, Y. T. Synth. Commun. 1998, 837– 841.
- 13. Patney, H. K. Synlett 1992, 567-568.
- Karimi, B.; Ma'mani, L. Tetrahedron Lett. 2003, 44, 6051– 6053.
- 15. Marcune, B. F.; Karady, S.; Dolling, U. H.; Novak, T. *J. Org. Chem.* **1999**, *64*, 2446–2449.
- (a) Auerback, J.; Weinreb, S. M. J. Chem. Soc., Chem. Commun. 1974, 298–299; (b) Meyers, A. I.; Durandetta, J. L.; Munava, R. J. Org. Chem. 1975, 40, 2025–2029.
- 17. Kleczykowski, G. R.; Schlessinger, R. H. J. Am. Chem. Soc. 1978, 100, 1938–1940.
- (a) Boehlow, T. R.; Harburn, J. J.; Spilling, C. D. J. Org. Chem. 2001, 66, 3111–3118; (b) Manti, H.; Leandri, G.; Klos-Rinquet, M.; Corriol, C. Synth. Commun. 1983, 13, 1021–1026.
- Corey, E. J.; Gras, J.-L.; Ulrich, P. Tetrahedron Lett. 1976, 17, 809–812.
- (a) Quindon, Y.; Morton, H. E.; Yoakim, C. *Tetrahedron Lett.* **1983**, *24*, 3969–3972; (b) Corey, E. J.; Hua, D. H.; Seitz, S. P. *Tetrahedron Lett.* **1984**, *25*, 3–6; (c) Boeckman, R. K., Jr.; Potenza, J. C. *Tetrahedron Lett.* **1985**, *26*, 1411– 1414.

- 21. Lee, A. S.-Y.; Hu, Y.-J.; Chu, S.-F. *Tetrahedron* **2001**, *57*, 2121–2126.
- 22. Deville, J. P.; Behar, V. J. Org. Chem. 2001, 66, 4097-4098.
- Ramesh, C.; Ravindranath, N.; Das, B. J. Org. Chem. 2003, 68, 7101–7103.
- 24. Keith, J. M. Tetrahedron Lett. 2004, 45, 2739-2742.
- (a) Sharma, G. V. M.; Ilangovan, A.; Mahalingam, A. K. J. Org. Chem. 1998, 63, 9103–9104; (b) Sharma, G. V. M.; Mahalingam, A. K.; Rajendra Prasad, T. Synlett 2000, 1479–1481; (c) Sharma, G. V. M.; Mahalingam, A. K.; Rajendra Prasad, T. Tetrahedron Lett. 2001, 42, 759–761; (d) Sharma, G. V. M.; Govardhan Reddy, Ch.; Radha Krishna, P. J. Org. Chem. 2003, 68, 4574–4575; (e) Sharma, G. V. M.; Srinivas, B.; Radha Krishna, P. Tetrahedron Lett. 2003, 44, 4689–4691; (f) Sharma, G. V. M.; Chandra Mouli, Ch. Tetrahedron Lett. 2002, 43, 9159– 9161; (g) Sharma, G. V. M.; Chandra Mouli, Ch. Tetrahedron Lett. 2003, 44, 8161–8163.
- Radha Krishna, P.; Kannan, V.; Sharma, G. V. M.; Ramana Rao, M. H. V. Synlett 2003, 888–890.
- 27. Bartoli, G.; Bosco, M.; Marcamtoni, E.; Sambri, L.; Torregiani, E. Synlett 1998, 209-211.
- Chandra, K. L.; Saravanan, P.; Singh, V. K. Tetrahedron Lett. 2001, 42, 5309–5311.
- 29. General experimental procedure for the protection of MOM ethers: To a solution of alcohol (1 mmol) in DMFA (2 mmol), ZrCl<sub>4</sub> (0.1 mmol) was added and stirred at room temperature until the starting material completely disappeared (TLC analysis). The reaction mixture was treated with EtOAc (20 mL), washed with water (15 mL), brine (15 mL), dried (Na<sub>2</sub>SO<sub>4</sub>) and evaporated under reduced pressure to give the MOM ethers, which were character-

ised by <sup>1</sup>H NMR, IR and mass spectroscopy. Spectral data:  $7a: [\alpha]_D - 23.33$  (c 1.50, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): δ 1.35 (s, 3H, CH<sub>3</sub>), 1.40 (s, 3H, CH<sub>3</sub>), 1.45 (s, 3H, CH<sub>3</sub>), 1.50 (s, 3H, CH<sub>3</sub>), 3.35 (s, 3H, -OCH<sub>3</sub>), 3.70 (d, 1H, J = 2.2 Hz, H-6), 3.80 (d, 1H, J = 2.2 Hz, H-6'), 3.90-4.05 (m, 3H, H-3, H-4, H-5), 4.25 (d, 1H, J = 2.28 Hz, H-5'), 4.40 (s, 1H, H-2), 4.64 (d, 1H, J = 6.09 Hz, H<sub>a</sub>), 4.68 (d, 1H, J = 6.09 Hz, H<sub>b</sub>); FABMS (m/z): 303 (M<sup>+</sup>-1) (8), 289, 215, 85, 44; IR (neat): 2914, 1612, 1464, 1248, 1174, 1096 cm<sup>-1</sup>; **10a**: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz):  $\delta$  1.65 (q, 2H, J = 7.5 Hz, CH<sub>2</sub>), 2.15 (q, 2H, J = 7.96 Hz, CH<sub>2</sub>), 3.30 (s, 3H,  $-OCH_3$ ), 3.40 (t, 2H, J = 6.42 Hz, CH<sub>2</sub>), 3.80 (s, 3H, -OCH<sub>3</sub>), 3.95 (d, 2H, J = 4.91 Hz, CH<sub>2</sub>), 4.40 (s, 2H, CH<sub>2</sub>), 4.60 (s, 2H, CH<sub>2</sub>), 5.50-5.70 (m, 2H, olefinic), 6.80 (d, 2H, J = 8.68 Hz, Ar-H), 7.20 (d, 2H, J = 8.68 Hz, Ar-H); EIMS: 280 (M<sup>+</sup>), 236, 205, 156, 107, 91; IR (neat): 2985, 2954, 1617, 1513, 1337, 1214,  $1075 \text{ cm}^{-1}$ .

30. General experimental procedure for the deprotection of MOM ethers: A mixture of MOM ether (1mmol) and ZrCl<sub>4</sub> (0.5 mmol) in dry isopropanol (4 mL) was heated at reflux. After the completion of reaction (TLC analysis), it was cooled to room temperature, the solvent was removed under reduced pressure and the residue was treated with EtOAc (10mL). The organic layer was washed with water (10mL), brine (10mL), dried (Na<sub>2</sub>SO<sub>4</sub>) and evaporated under reduced pressure to give the products. Spectral data for 10: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz):  $\delta$  1.65 (q, 2H,  $J = 7.0 \text{ Hz}, \text{ CH}_2$ ), 2.15 (q, 2H,  $J = 7.5 \text{ Hz}, \text{ CH}_2$ ), 3.40 (t, 2H, J = 5.5Hz, CH<sub>2</sub>), 3.80 (s, 3H, -OCH<sub>3</sub>), 3.95 (d, 2H, J = 8.6 Hz, 1 H), 4.40 (s, 2H, CH<sub>2</sub>), 5.50–5.70 (m, 2H, olefinic), 6.80 (d, 2H, J = 8.7 Hz, Ar-H), 7.20 (d, 2H, J = 8.7 Hz, Ar-H; EIMS: 250 (M<sup>+</sup>), 204, 156, 107, 91; IR (neat): 2976, 2947, 1622, 1517, 1341, 1221,  $1081 \text{ cm}^{-1}$ .